Abstract

Hippocampal demyelination in multiple sclerosis (MS) has been linked with cognitive deficits, however, patients could benefit from treatment that induces oligodendroglial cell function and promotes remyelination. We investigated the role of A1 and A2A adenosine receptors (AR) in regulating oligodendrocyte precursor cells (OPCs) and myelinating oligodendrocyte (OL) in the demyelinated hippocampus using the cuprizone model of MS. Spatial learning and memory were assessed in wild type C57BL/6 mice (WT) or C57BL/6 mice with global deletion of A1 (A1AR-/-) or A2A AR (A2AAR-/-) fed standard or cuprizone diet (CD) for four weeks. Histology, immunofluorescence, Western blot and TUNEL assays were performed to evaluate the extent of demyelination and apoptosis in the hippocampus. Deletion of A1 and A2A AR alters spatial learning and memory. In A1AR-/- mice, cuprizone feeding led to severe hippocampal demyelination, A2AAR-/- mice had a significant increase in myelin whereas WT mice had intermediate demyelination. The A1AR-/- CD-fed mice displayed significant astrocytosis and decreased expression of NeuN and MBP, whereas these proteins were increased in the A2AAR-/- CD mice. Furthermore, Olig2 was upregulated in A1AR-/- CD-fed mice compared to WT mice fed the standard diet. TUNEL staining of brain sections revealed a fivefold increase in the hippocampus of A1AR-/- CD-fed mice. Also, WT mice fed CD showed a significant decrease expression of A1 AR. A1 and A2A AR are involved in OPC/OL functions with opposing roles in myelin regulation in the hippocampus. Thus, the neuropathological findings seen in MS may be connected to the depletion of A1 AR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call