Human papillomavirus 16 (HPV16) is an oncogenic virus responsible for the majority of invasive cervical cancer cases worldwide. Due to genetic modifications, some variants are more oncogenic than others. We analysed the HPV16 phylogeny in HPV16-positive cervical Desoxyribonucleic Acid (DNA) samples collected from South African and Mozambican women to detect the circulating lineages. Polymerase chain reaction (PCR) amplification of the long control region (LCR) and 300 nucleotides of the E6 region was performed using HPV16-specific primers on HPV16-positive cervical samples collected in women from South Africa and Mozambique. HPV16 sequences were obtained through Next Generation Sequencing (NGS) methods. Geneious prime and MEGA 11 software were used to align the sequences to 16 HPV16 reference sequences, gathering the A, B, C, and D lineages and generating the phylogenetic tree. Single nucleotide polymorphisms (SNPs) in the LCR and E6 regions were analysed and the phylogenetic tree was generated using Geneious Prime software. Fifty-eight sequences were analysed. Of these sequences, 79% (46/58) were from women who had abnormal cervical cytology. Fifteen SNPs in the LCR and eight in the E6 region were found to be the most common in all sequences. The phylogenetic analysis determined that 45% of the isolates belonged to the A1 sublineage (European variant), 34% belonged to the C1 sublineage (African 1 variant), 16% belonged to the B1 and B2 sublineage (African 2 variant), two isolates belonged to the D1-3 sublineages (Asian-American variant), and one to the North American variant. The African and European HPV16 variants were the most common circulating lineages in South African and Mozambican women. A high-grade squamous intraepithelial lesion (HSIL) was the most common cervical abnormality observed and linked to European and African lineages. These findings may contribute to understanding molecular HPV16 epidemiology in South Africa and Mozambique.