We investigated the interaction of a series of metal-protoporphyrins (PPIXs) with bovine β- lactoglobulin (BLG) using a combination of optical spectroscopy and computational simulations. Unlike other studies, the simulations were not merely used to rationalize the experimental data but were employed to refine the experimental data itself. The study was carried out at two pH values, 5 and 9, where BLG is known to have different conformation dictated by the so-called Tanford transition which occurs near pH 7.5. The transition is postulated to regulate access to the interior binding cavity of the protein, thus the pH variation was used as a parameter to investigate whether PPIXs access the central cavity of BLG. The results of our study show that indeed binding increases significantly at alkaline pH, however, the increased affinity is not due to the accessibility of the central cavity. Instead, binding appears to be determined by the tendency of PPIXs to form large inhomogeneous aggregates at acidic pH which hinders interactions with proteins.The binding site determined through a combination of experimental and computational methods is located at the interface between two BLG monomers where the long α-helix segment of the protein face each other. This region is rich in positively charged Lys residues that interact with the propionic acid chains of the protoporphyrins.Establishing the modality of binding between protoporphyrins and BLG would have important consequences for the use of BLG:PPIX complexes in applications such as artificial photoreceptors, artificial metallo-enzymes, delivery of photosensitizers for phototherapy and even solar energy conversion.