Abstract

After identifying and isolating a grapevine ( Vitis vinifera L.) NHX vacuolar antiporter and before initializing functional genomic studies, we juged necessary to acquire a minimum of knowledge about the VvNHX1 protein. Thus, we realized a bioinformatic analysis to determine its basic characteristics and to get structural informations that could guide us through the functional characterization. We have determined important physico-chemical parameters (molecular mass, isoelectric point, hydrophobic regions, etc.) and obtained interesting structural data (primary, secondary, and tertiary structures; conserved domains and interaction motives; etc.). The VvNHX1 gene, which encodes this 541 amino-acid protein with a predicted molecular mass of 60 kDa, is made of 14 exons and measures 6.5 kb. The amino-acidic composition of this protein is very important, in particular, for the establishment of the α-helix structure, which represents more than 50% of the protein, but also for charge distribution, which generates critical electrostatic interactions for the ionic flux. The secondary structure of VvNHX1 contains multiple transmembrane α-helix segments that are made of hydrophobic amino-acid residues, thus facilitating its insertion in the membrane. Globally, VvNHX1 has one hydrophobic N-terminal region, made of 10 transmembrane segments with 440 amino-acid residues, and one hydrophilic C-terminal region, made of 100 residues. The region located between the fourth and fifth transmembrane segments represents, with its structure mainly helicoidal and the presence of a favourable electrostatic environment, the pore where cation flux is performed across the membrane. VvNHX1 contains various interaction domains as well as several putative posttranslational modification sites, mainly at the C-terminus but also at the N-terminus, that play an important part in regulating protein activities, influence protein structural stability, or interact with other proteins or signalling molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.