Abstract

Replica-exchange molecular dynamics simulations with hybrid Hamiltonian in explicit solvent were performed to study the folding of a designed 20-residue miniprotein, Trpcage, from a fully extended structure. During the simulations several folding/unfolding events happened. In the folded states the majority of experimentally observed NMR NOE restraints are satisfied. The folded structures have root mean squared deviation of 2.0 Å with respect to the NMR structures considering all heavy atoms. The free-energy surface constructed by the hybrid Hamiltonian simulations is similar to the one built by a standard replica-exchange simulation which started from the native structure. Consistent with previous experimental observation, a pre-existing hydrophobic collapse in the unfolded state is detected by investigating the desolvation behavior of Trpcage. At room temperature, an intermediate state featured by a misfolded core, a nearly formed α-helix segment and an absence of 3 10-helix is found. The replica exchange with hybrid Hamiltonian method is shown here to be capable of resolving the folding picture of the miniprotein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.