Rats communicate through auditory signals in the ultrasonic range, so-called ultrasonic vocalizations (USV). Short, high-frequency 50-kHz USV are associated with positive affective states and are emitted in appetitive situations, often rewarding social interactions, such as rough-and-tumble play and mating. Exaggerated levels of 50-kHz USV emission can be observed in response to psychostimulants, most notably d-amphetamine (AMPH). There is robust evidence suggesting that 50-kHz USV serve as affiliative signals and help to maintain or re-establish social proximity. A key neurotransmitter involved in behavioral regulation is serotonin (5-hydroxytryptamine, 5-HT). This includes both, the regulation of anxiety-related behavior and ultrasonic communication. Here, we show that acute treatment with the selective 5-HT reuptake inhibitor (SSRI) escitalopram (ESC) leads to increased anxiety-related behavior in the elevated plus maze and tested whether such acute anxiogenic effects of ESC result in alterations in ultrasonic communication in sender and/or receiver. To this aim, we conducted a dose-response study in male rats and assessed AMPH-induced hyperactivity and 50-kHz ultrasonic calling in the sender and social approach behavior evoked by playback of pro-social 50-kHz USV in the receiver. Acute ESC treatment affected both, sender and receiver. This was reflected in a lack of AMPH-induced changes in acoustic features of 50-kHz USV and absence of social exploratory behavior evoked by 50-kHz USV playback, respectively. Albeit the SSRI effects were relatively mild, this supports the notion that the 5-HT system is involved in the regulation of a key aspect of the social behavior repertoire of rodents, namely socio-affective communication through 50-kHz USV.
Read full abstract