The Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn superconducting wire is a promising candidate for cutting-edge high-field magnets such as the next generation particle accelerator and fusion reactor. Recently, Hf–Ta addition to Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn wires has attracted our great interest, because it results in significant grain refinement and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">J</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> enhancement, maintaining high <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c2</sub> . In this work, we studied how much effect the Hf–Ta addition has on the layer formation and superconducting characteristics, when it is applied to bronze-route Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn wires, through microstructural and microchemical analysis by using EBSD and EDS. For simplicity, single-core composite wires were fabricated and tested. The tested wires included conventional Ti-doped Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn and Hf–Ta-doped Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn wires. As a result, grain refinement in Hf–Ta addition was not significant in bronze process, compared with internal-tin process. Apparently, the thickness of Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn layer was thick especially when Ti was doped into the Cu-Sn bronze matrix. Sn content seems to be also high in Ti-doping to Cu-Sn bronze matrix. In the bronze-route process, impact of Ti addition on the promotion of Sn diffusion seems to be relatively large, compared with Hf–Ta addition.