Abstract

In the framework of the High Field Magnets (HFM) program, CERN is developing and qualifying Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn Rutherford cables to support magnet development towards the requirements of a future energy-frontier collider, using both state-of-the-art commercial wires and experimental wires under development with industrial partners. The trend towards higher current density and larger diameter wires imposes challenges for magneto-thermal stability. In this study, rolling trials and Rutherford cabling have been performed at CERN for two designs of a 1 mm diameter distributed tin Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn wire produced by KAT, and for 1 mm and 1.1 mm diameter RRP Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn wires procured from Bruker OST, and the self-field stability and cabling degradation have been analyzed. The 1 mm RRP wire shows significant degradation in <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I<sub>c</sub></i> and stability on cabling. Although the latter is not expected to impact the performance of research magnets, the potential of heat treatment optimization to improve stability has also been quantified. The distributed tin wire shows substantially poorer stability, but promising indications of low cabling degradation. The influence of wire design characteristics on cabling behavior and stability have been assessed, and the implications for future wire optimization towards high field accelerator magnet applications have been discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.