In recent years, Apolygus lucorum has caused increasing damage to cotton and fruit trees in China. The salivary enzymes secreted by A. lucorum when sucking on host plants induce a series of biochemical reactions in plants, and the pre-oral digestion benefits the bug feeding. In this study, the food intake of A. lucorum from 1st instar nymphs to adults was measured, and the corresponding salivary activity of pectinase, amylase, cellulase, protease, polyphenol oxidase and peroxidase was determined. Daily food intake varied with developmental stage, peaking in 3rd and 4th instar nymphs. Pectinase, amylase, cellulase and protease were detected in both nymphal and adult saliva of A. lucorum, while neither polyphenol oxidase nor peroxidase was detected. Protease activity varied with food intake peaking at the 3rd-4th instar, and then slightly decreasing at the 5th instar. Levels of pectinase, amylase and cellulase increased significantly with the daily feeding level until the 3rd instar, corresponding with increasing damage to host plants. The activity of both cellulase and protease had a significant linear relationship with the average daily food intake. The increasing activity of enzymes in saliva explain stage-specific impacts of A. lucorum on the host plants, and suggest that optimal management of A. lucorum would be confined to its control threshold prior to the peak of daily feeding in the 3rd instar.
Read full abstract