The development of a tomographic background oriented schlieren implementation system utilizing up to four plenoptic cameras is presented. A systematic set of experiments was performed using a pair of solid dimethylpolysiloxan cylinders immersed in a nearly refractive index matched gylcerol/water solution to represent discrete flow features with known sizes, shapes, separation distances, and orientation. A study was conducted to assess the influence of these features on the accuracy of 3D reconstructions of the refractive index field. It was determined that the limited angular information collected by a single plenoptic camera is insufficient for single-camera 3D reconstructions. In multi-camera configurations, the additional views collected by a plenoptic camera were shown to improve the overall reconstruction accuracy compared to an equivalent single view per camera reconstruction, potentially reducing the number of overall cameras needed to achieve a desired accuracy. For the imaging of two cylinders, three or more cameras are generally needed to avoid significant ghosting artifacts in the reconstruction. Quantitative results are presented that show that: (1) two separate cylinders will be individually resolved as long as measurements from one camera are able to observe separation between the cylinders; (2) the error in the reconstructed 3D refractive index field increases as the size of the feature decreases; and (3) the use of volumetric masking within the reconstruction algorithm is critical in order to improve the accuracy of the solution.
Read full abstract