Abstract

Three-dimensional (3D) refractive index (RI) distribution is important to reveal the object’s inner structure. We implemented terahertz (THz) diffraction tomography with a continuous-wave single-frequency THz source for measuring 3D RI maps. The off-axis holographic interference configuration was employed to obtain the quantitative scattered field of the object under each rotation angle. The 3D reconstruction algorithm adopted the filtered backpropagation method, which can theoretically calculate the exact scattering potential from the measured scattered field. Based on the Rytov approximation, the 3D RI distribution of polystyrene foam spheres was achieved with high fidelity, which verified the feasibility of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call