Accurate measurement of aerosol pH is crucial for understanding atmospheric processes and mitigating haze pollution. However, online detection of aerosol pH is challenging due to the complex composition of single-particle matter and trace components. This study develops a sensitive and selective sensor for the online detection of aerosol pH using surface-enhanced Raman spectroscopy (SERS). A novel Fe3O4@SiO2@Au-p-aminothiophenol (FA-pATP) sensor was fabricated using a layer-by-layer self-assembly method, achieving enhanced uniformity and increased density of SERS-active hotspots. Magnetic aggregation was employed to further amplify the Raman signal. This sensor was integrated into a 3D-printed microfluidic device to facilitate online monitoring of aerosol pH. The FA-pATP sensor exhibited a significant increase in peak intensity ratio with rising pH, demonstrating high sensitivity and responsiveness due to structural changes in the -NH2 groups of pATP under different pH conditions. The sensor demonstrated a linear pH response ranging from 5 to 11. The 3D-printed microfluidic device, coupled with the FA-pATP sensor, demonstrated notable performance in various environmental media, indicating strong anti-interference capabilities. The proposed sensor shows great promise for real-time online monitoring of aerosol pH, with broad applications in environmental monitoring.
Read full abstract