Abstract

Lipid nanoparticles (LNPs) are drug carriers for protecting nucleic acids for cellular delivery. The first mRNA vaccines authorized by the United States Food and Drug Administration are the mRNA-1273 (Moderna) and BNT162b (BioNTech/Pfizer) vaccines against coronavirus disease 2019 (COVID-19). We designed a 3D printed Omnidirectional Sheath-flow Enabled Microfluidics (OSEM) device for producing mRNA-loaded LNPs that closely resemble the Moderna vaccine: we used the same lipid formulations to encapsulate mRNA encoding SARS-CoV-2 spike protein. The OSEM device is made of durable methacrylate-based materials that can support flow rates in the mL min-1 range and was fabricated by stereolithography (SLA), incorporating readily adaptable interfaces using commercial fluidic connectors. Two key features of the OSEM device are: 1) a 4-way hydrodynamic flow focusing region and 2) a staggered herringbone mixer (SHM). Superior to conventional planar fluid junctions, the 4-way sheath flow channel generates an evenly focused, circular center flow that facilitates the formation of LNPs with low polydispersity. Downstream, fluid mixing in the SHM is intensified by incorporating a zig-zag fluidic pathway to deliver high mRNA encapsulation efficiency. We characterized the mRNA-loaded LNPs produced in the OSEM device and showed that the enhanced 3D microfluidic structures enable a 5-fold higher throughput production rate (60 mL min-1) of LNPs compared to commercial multi-thousand-dollar micromixers. The device produced LNPs of diameter less than 90 nm, with low polydispersity (2-8%) and high mRNA encapsulation efficiency (>90%). The 3D-printed device provides a cost-effective and easily prepared solution for high-throughput LNP production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.