Dirac points (DPs) and Weyl points (WPs) have received much attention in photonic crystals (PhCs) and three-dimensional (3D) metamaterials research due to the robust surface states and Fermi arcs. In this work, two pairs of triply degenerate points (TDPs) have been proposed in a 3D metamaterial by breaking the time reversal symmetry (T) with an external magnetic field. Based on these TDPs, two pairs of asymmetric surface states with spin-polarization are revealed, and a topological chiral beam splitter is demonstrated showing the different propagating directions of the right-handed polarization (RCP) and left-handed polarization (LCP) lights. Remarkably, we can achieve unidirectional propagation with RCP or LCP even excited by a linear source owing to the asymmetry surface state. Our work provides a new, to the best of our knowledge, platform to study spin-polarization surface states and the enhanced spin photonic Hall effect in the metamaterials.
Read full abstract