Most current security and authentication systems are based on personal biometrics. The security problem is a major issue in the field of biometric systems. This is due to the use in databases of the original biometrics. Then biometrics will forever be lost if these databases are attacked. Protecting privacy is the most important goal of cancelable biometrics. In order to protect privacy, therefore, cancelable biometrics should be non-invertible in such a way that no information can be inverted from the cancelable biometric templates stored in personal identification/verification databases. One methodology to achieve non-invertibility is the employment of non-invertible transforms. This work suggests an encryption process for cancellable speaker identification using a hybrid encryption system. This system includes the 3D Jigsaw transforms and Fractional Fourier Transform (FrFT). The proposed scheme is compared with the optical Double Random Phase Encoding (DRPE) encryption process. The evaluation of simulation results of cancellable biometrics shows that the algorithm proposed is secure, authoritative, and feasible. The encryption and cancelability effects are good and reveal good performance. Also, it introduces recommended security and robustness levels for its utilization for achieving efficient cancellable biometrics systems.
Read full abstract