Abstract

Biometric systems are widely used now for security applications. Two major problems are encountered in biometric systems: the security problem and the dependence on a single biometric for verification. The security problem arises from the utilization of the original biometrics in databases. So, if these databases are attacked, the biometrics are lost forever. Hence, there is a need to secure original biometrics by keeping them away from utilization in biometric databases. Cancelable biometrics is an emerging security trend in the field of biometric authentication. Cancelable biometric systems depend on the transformation of biometric features into new formats so that users can replace their biometric templates in the same or different systems. In this paper, we present a proposed cancelable face and fingerprint recognition algorithm based on the 3D jigsaw transform and optical encryption. The algorithm adopts the Fractional Fourier Transform (FRFT) in the optical encryption scheme with a single random phase mask. This structure can be implemented all optically with a single lens. The proposed cancelable biometric recognition algorithm employs an optical image encryption scheme that depends on two cascaded stages of 2D-FRFT with separable kernels in both dimensions. The two stages are separated with a random phase mask. A preceding bit plane permutation process is performed on the obtained biometrics prior to the FRFT operation to achieve a high level of security. To validate the proposed algorithm for cancelable biometric recognition, different sets of face and fingerprint images are used. A comparative study is presented between the proposed algorithm and the optical Double Random Phase Encoding (DRPE) algorithm. The simulations results obtained for performance evaluation show that the proposed algorithm is safe, reliable, and feasible. It has good encryption and cancelability that reveal good performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.