The objectives of this work are to quantify the influence of material and operational uncertainties on the performance of self-adaptive marine rotors, and to develop a reliability-based design and optimization methodology for adaptive marine structures. Using a previously validated 3D fluid–structure interaction model, performance functions are obtained and used to generate characteristic response surfaces. A first-order reliability method is used to evaluate the influence of uncertainties in material and load parameters and thus optimize the design parameters. The results demonstrate the viability of the proposed reliability-based design and optimization methodology, and demonstrate that a probabilistic approach is more appropriate than a deterministic approach for the design and optimization of adaptive marine structures that rely on fluid–structure interaction for performance improvement.
Read full abstract