The distribution of motor errors can influence optimal motor planning (where to aim). In football instep kicking, it was shown that ball landing locations exhibit the right-up-left-down elliptical distribution in right-footed kickers and vice versa. However, this was reported as a result of mixed multiple kickers; the individual-level error distribution has been unclear. Here we show substantial inter-individual variability in error shape and error direction in the 30 kicks aimed at a target (1.7 m high, 11.0 m in front) by 27 male football players. All players exhibit right-up-left-down distributions with ellipticity (minor/major radius ratio of the 95% confidence ellipse) ranging from 0.25 to 0.77 and major axis angle ranging from 13 to 67° from the horizontal axis. The mean absolute error and the area of the 95% confidence ellipse are not significantly correlated with major axis angle (ρ ≤ 0.312) and ellipticity (|r| ≤ 0.343). By simulating shots aimed at the top-right and top-left edges of a goal with these observed ranges and normalised ellipse area, we reveal a wide range of probability of shots on goal (top-right: 2.7-fold difference, top-left: 1.5-fold difference) due to inter-individual variability in error shape and direction independent of error size. Further simulation shows that, depending on the shape-direction combination, the aiming points with the same 80% probability of shots on goal change by up to 0.3 m vertically, even for the same minimal error size. We highlight the importance for football players to consider not only accuracy/precision, but also error shape and direction to optimise motor planning.