Abstract

Current strategies for simultaneously achieving high thermoelectric performance and high light absorption efficiency still suffer from complex steps and high costs. Herein, two kinds of amorphous thermoelectric films of n-type Bi2Te3 and p-type Bi0.5Sb1.5Te3 with high Seebeck coefficients were prepared by pulsed laser deposition (PLD) technology. In addition, C-decorated films with excellent light absorption efficiency at the junction of the thermoelectric legs were prepared by simple drop coating and reactive ion etching (RIE) method. The TE/C-RIE composite device exhibits excellent photodetection performance under the conditions of simulated natural light, monochromatic light, and high-frequency chopping. The maximum responsivity and specific detectivity of the device can reach 153.58 mV W-1 and 6.97 × 106 cm Hz1/2 W-1 (under simulated natural light), respectively. This represents an improvement rate of 85.91% compared to that of the pure TE device. Benefiting from the excellent photodetection efficiency of the device and integration advantage of PLD technology, the composite structure can be expanded into integrated photoimaging devices. The accurate identification of patterned light sources with letters (T, J, and U) and digitals (0-9) was successfully realized by associating the response electrical signals of each electrode with the position coordinates. This work provides valuable guidance for the design and fabrication of wide-spectrum photodetectors and complex optical imaging devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.