This work aims to optimize the main YAG fiber laser parameters to weld 304L stainless steel plates of 3 mm thick. Different laser powers (2500, 2000, and 1500 W) and speeds (60, 40, and 20 mm/s) were used and merged in heat input, maintaining the defocusing distance at –2 mm to get full penetration. The weld quality and the effect of the laser heat input on the microstructures of the weld and heat-affected zones were investigated. Besides, the fracture strength of the welded joints and hardness distribution through the cross-sections were evaluated. The weld width has a direct relationship with heat input. The laser power of 2800 W produced full penetration joints without any macro defects while reduction in laser power pronounced partial penetration defects. The size of the heat-affected zone in all the processing parameters was very small. The microstructure of the weld zone shows columnar dendrite austenite grains with small arm spacing in most of the welded zone. The size of the dendrites became finer at lower heat input. At a higher heat input, a reasonable amount of lathy equiaxed grains with some delta ferrite occurred. A small amount of delta ferrite was detected in the heat-affected zone, which prevented the crack formation. The hardness of the weld metal was much higher than that of the base metal in all processing parameters and it has a reverse relationship with the heat input. The fracture strength of the welded joints was very close to that of the base metal in the defect-free samples and it increased with decreasing the heat input.