Abstract

Stainless steel fulfills most of the requirements as bipolar plates in Proton Exchange Membrane Fuel Cell. However, it undergoes severe corrosion in fuel cell operating condition. This can be resolved by coating the stainless steel with corrosion resistive conducting polymers. In this study, homogeneous and adherent conductive Poly(2-amino-5-mercapto-1,3,4- thiadiazole)/Polypyrrole (PAMT/PPY) mono and bilayer polymer composite coatings are electrosynthesized on 316L SS in 0.5 M H2SO4 by cyclic voltammetry and chronopotentiometry. The hydrophobicity and surface morphology of the coatings are analyzed by contact angle and scanning electron microscopy respectively. The polymer coatings are evaluated in 0.5 M H2SO4 medium by potentiodynamic polarization and impedance techniques at 25 °C. The polarization results reveal that PAMT on PPY composite coating shifts the Ecorr of the 316L SS towards noble direction. The EIS study reveals that the Rf value of PAMT on PPY coating is significantly higher by three orders (x103 Ωcm2) of magnitude than uncoated 316L SS. The corrosion performance of the coatings in simulated PEMFC environment is investigated by potentiodynamic and potentiostatic studies. Results show that the PAMT on PPY and PPY on PAMT bilayer coatings are stable and increased the corrosion potential by about 410–470 mV and 275–310 mV (SCE) in simulated cathodic and anodic conditions respectively. This investigation reports that the PAMT on PPY bilayer coating is serving as a good physical barrier and protecting the 316L SS against corrosion in PEMFC environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.