The vertical tail buffet induced by the vortex breakdown flow is numerically investigated. The unsteady flow is calculated by solving the RANS equations. The structural dynamic equations are decoupled in the modal coordinates. The radial basis functions (RBFs) are employed to generate the deformation mesh. The buffet response of the flexible tail is predicted by coupling the three sets of equations. The results show that the presence of asymmetry flow on the inner and outer surface of the tail forced the structural deflection offsetting the outboard. The frequency of the 2nd bending mode of the tail structure meets the peak frequency of the pressure fluctuation upon the tail surface, and the resonance phenomenon was observed. Therefore, the 2nd bending responses govern the flow field surrounding the vertical tail. Finally, the displacement of the vertical tail is small, while the acceleration with a large quantitation forces the vertical tail undergoing severe addition inertial loads.
Read full abstract