Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Reproducible, Scale-Up Production of Human Brain Organoids (HBOs) on a Pillar Plate Platform via Spheroid Transfer.

Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research. Key challenges include high costs of growth factors, variability in organoid size and function, suboptimal maturation, and manual handling that reduces throughput. Here, we present a standard operating procedure (SOP) for the scalable production of HBOs using a novel pillar plate system that simplifies the spheroid transfer process and allows miniature organoid culture. This method enables the reproducible generation of HBOs without the need for extensive manual intervention, providing a streamlined solution for high-throughput screening (HTS). The resulting assay-ready pillar plate with HBOs is optimized for compound testing, in situ staining, and analysis, offering an efficient platform to advance neurodevelopmental research and therapeutic screening.

Read full abstract
Just Published
Biosynthesis of Zinc Oxide Nanoparticles Using Dried Leaves of Camellia sinensis: Methods to Characterize and Assess Their Effects on Mesenchymal Stem Cell Viability.

Stem cell nanotechnology (SCN) is an important scientific field to guide stem cell-based research of nanoparticles. Currently, nanoparticles (NPs) have a rich spectrum regarding the sources from which they are obtained (metallic, polymeric, etc.), the methods of obtaining them (physical, chemical, biological), and their shape, size, electrical charge, etc. properties. It is also essential to expand green synthesis applications for the use of NPs in the field of biomedical sciences. For this purpose, there is a need to produce NPs using biological sources (plant, microorganism, algae, yeast etc.…), characterization and investigation of their effects on biological activities of stem cells. This process involves long and laborious procedures, and there may be differences in methods between individual laboratories.In this protocol, biofabrication and characterization of ZnO NPs using dried leaves of Camellia sinensis is described. This experimental setup includes conventional and novel methods that can be applied to biofabricate and characterize the NPs and to examine the viability, apoptotic, and necrotic effects on human adipose tissue-derived mesenchymal stem cells (ADMSCs) in vitro.

Read full abstract
Just Published