Abstract
Human nasal epithelium (HNE) organoid models of SARS-CoV-2 infection were adopted globally during the COVID-19 pandemic once it was recognized that the Vero cell line commonly used by virologists did not recapitulate human infection. However, the widespread use of HNE organoid infection models was hindered by the high cost of media and consumables, and the inherent limitation of basal cells as a scalable continuous source of cells. The human Calu-3 cell line, generated from a lung adenocarcinoma, was shown to largely recapitulate infection of the human epithelium and to preserve the SARS-CoV-2 genomic fidelity. We have previously shown that continuous cancer cell lines can polarize along the apical-basal axis when embedded in matrix and to more closely mimic infection of human cells when compared to their non-polarized, simple monolayer state. We have established and demonstrated that polarized Calu-3 cells constitute a robust SARS-CoV-2 infection model. The polarized Calu-3 cells are implemented in our respiratory virus isolation and amplification pipeline as an inexpensive, scalable, intermediary culture system to complement the HNE organoid model against which all respiratory culture models are benchmarked.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have