Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Drop-on-Demand 3D Printing of Programable Magnetic Composites for Soft Robotics

Soft robotics have become increasingly popular as a versatile alternative to traditional robotics. Magnetic composite materials, which respond to external magnetic fields, have attracted significant interest in this field due to their programmable two-way actuation and shape-morphing capabilities. Additive manufacturing (AM), also known as 3D printing, allows for the incorporation of different functional composite materials to create active components for soft robotic systems. However, current AM methods have limitations, especially when it comes to printing smart composite materials with high functional material content. This is a key requirement for enhancing responsiveness to external stimuli. Commonly used AM methods for smart magnetic composites, such as direct ink writing (DIW), confront challenges in achieving discontinuous printing, and enabling multi-material control at the voxel level, while some AM techniques are not suitable for producing composite materials. To address these limitations, we employed high-viscosity drop-on-demand (DoD) jetting and developed versatile programmable magnetic composites filled with micron-sized hard magnetic particles. This method bridges the gap between conventional ink-jetting and DIW, which require inks with viscosities at opposite ends of the spectrum. This high-viscosity DoD jetting enables continuous, discontinuous, and non-contact printing, making it a versatile and effective method for printing functional magnetic composites even with micron-sized fillers. Furthermore, we demonstrated stable magnetic domain programming and two-way shape-morphing actuations of printed structures for soft robotics. In summary, our work highlights high-viscosity DoD jetting as a promising method for printing functional magnetic composites and other similar materials for a wide range of applications.

Read full abstract
On the Damping and Fatigue Characterization of Additively Manufactured Ti-6Al-4V

With the recent implementation of additively manufactured parts into industrial applications, there is a dire need for nondestructive evaluation methods to qualify if these components are fit for service due to their sensitivity to processing conditions. The Impulse Excitation Technique (IET) is applied to additively manufactured Ti-6Al-4V bending specimens to determine natural frequencies and damping properties in order to predict fatigue performance relative to specimens fabricated with different processing parameters. From the damping and natural frequency results, it was found that the specimens, fabricated with intentional underheating to induce lack of fusion defects, had the lowest damping value in the pristine condition and the highest natural frequency. For the three batches of specimens tested, it was determined that the lack of fusion specimens had the best fully-reversed bending fatigue performance with the highest fatigue limit (297 MPa) and longest fatigue lives as compared to the other two batches, implying a relation of decreased fatigue life with increased material damping in the pristine condition. The theory of the IET related to materials is presented with damping and fatigue results, as well as microstructural analysis and fractography of three specimens batches fabricated with different processing parameters.

Read full abstract
On the role of the preheat temperature in electron-beam powder bed fusion processed IN718

Process parameters optimization in additive manufacturing (AM) is usually required to unlock superior properties, and this is often facilitated by modeling. In electron beam powder bed fusion (E-PBF), the preheat temperature is an important parameter to be optimized as it significantly influences the microstructure and properties. Here we compare the effect of two preheat temperatures (1000 and 950°C, above and below δ-phase solvus temperature) on the microstructural evolution of E-PBF IN718 Ni-based superalloy. Using thermal and thermo-kinetic modeling, we predict microstructural changes and compare them with experimental findings. A decrease of only 50°C in the preheat temperature has a low impact on the solidification microstructure with a slight reduction in columnar grain width. In the solid-state, higher preheating causes intergranular δ-phase precipitation, contributing to a higher γ" precipitation potential, formation of co-precipitates, and higher hardness. The lower preheat temperature induces intergranular and intragranular δ-phase precipitation, reducing the γ" precipitation potential and hardness. The chemical composition of γ' and γ" is largely unaffected by the preheat temperature variation. These insights underscore the importance of preheat temperature optimization in microstructure design and property control during E-PBF.

Read full abstract
Open Access
A new process route for the additive manufacturing of a high nitrogen containing martensitic stainless steel - A feasibility study

High-nitrogen martensitic stainless steels, such as X30CrMoN15 (0.3 to 0.5 mass% nitrogen), exhibit an excellent combination of strength and corrosion resistance, making them well-suited for applications in the medical technology and aerospace industry. The qualification of these steels for additive manufacturing (AM) could generate new application areas where AM, due to its process-specific advantages, could offer added value compared to conventional manufacturing methods. However, the laser powder bed fusion (PBF-LB/M) of high-nitrogen alloyed steels is challenging due to the high tendency for gas pore formation, resulting from the limited nitrogen solubility in the steel melt. In this work, a new process route for AM of a high nitrogen containing X50CrMoV15 martensitic stainless steel is presented, which consists of a process combination of powder nitriding, PBF-LB/M and subsequent hot isostatic pressing (HIP) with integrated quenching. Gas nitriding is used to achieve a nitrogen content in the starting powder that exceeds the maximum solubility in the melt. Although the nitrogen content decreases during the PBF-LB/M process, the high solidification and cooling rates prevent the melt from reaching equilibrium nitrogen levels, resulting in a nitrogen content above the solubility limit in the final PBF-LB/M state. The pores formed during the process are closed through HIP, which also allows hardening via integrated gas quenching. With an additional cryogenic treatment, the process produces a fully dense steel with 75% martensitic structure and 0.246 mass% nitrogen. Further optimization opportunities have been identified and are discussed.

Read full abstract
Open Access