Abstract
With the recent implementation of additively manufactured parts into industrial applications, there is a dire need for nondestructive evaluation methods to qualify if these components are fit for service due to their sensitivity to processing conditions. The Impulse Excitation Technique (IET) is applied to additively manufactured Ti-6Al-4V bending specimens to determine natural frequencies and damping properties in order to predict fatigue performance relative to specimens fabricated with different processing parameters. From the damping and natural frequency results, it was found that the specimens, fabricated with intentional underheating to induce lack of fusion defects, had the lowest damping value in the pristine condition and the highest natural frequency. For the three batches of specimens tested, it was determined that the lack of fusion specimens had the best fully-reversed bending fatigue performance with the highest fatigue limit (297 MPa) and longest fatigue lives as compared to the other two batches, implying a relation of decreased fatigue life with increased material damping in the pristine condition. The theory of the IET related to materials is presented with damping and fatigue results, as well as microstructural analysis and fractography of three specimens batches fabricated with different processing parameters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have