Abstract
After the implantation of lower limb artery stents, the complex loading conditions imposed on the limb can lead to fatigue failure, which may induce inflammation and restenosis. To investigate the effect of multi-axial loading conditions on the fatigue performance of stents, five stents, namely APsolute Pro (APbott Vascular, USA), Complete SE (Medtronic, USA), Protégé EverFlex (PE3, USA), Pulsar-35 (Biotronik, Germany), and E-luminexx-B (Bard, USA), were analyzed based on the finite element method (FEM). Besides, their fatigue strength was determined under three levels of loading conditions, including tension-bending-torsion and compression-bending-torsion. Based on that, the fatigue life of these stents was predicted. The results showed that based on the nominal stress method, tension-bending-torsion loading had a more significant impact on the fatigue life of stents than compression-bending-torsion loading. Besides, two different types of initial cracks were analyzed by the fracture mechanics method. The results suggested that both the initial crack and the external load were the main causes of stent fatigue fractures. Compared with the loading nature, the influence of the initial crack on stent fatigue life was more significant. Under the same loading condition, the APsolute Pro stent had the longest fatigue life, while the E-luminexx-B stent had the shortest. Moreover, the mechanism of stent fatigue failure was revealed by exploring the fatigue performance and life prediction of stents under complex loading conditions. These findings have important implications for improving the structural design of stents and their clinical selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.