Abstract

High-cycle fatigue (HCF) behaviors of medium-carbon bainitic steels with various inclusion sizes and microstructural features were studied using the rotating–bending fatigue test. Here, the medium-carbon bainitic steels with different melting processes were treated by three heat treatment routes incorporating bainite formation, namely bainite-based quenching plus partitioning (BQ&P), bainite austempering (BAT) and “disturbed bainite austempering, DBAT”. The interior inclusion-induced crack initiation (IICI) and noninclusion-induced crack initiation (NIICI) modes were found after fatigue failure. The fracture surface of IICI is characterized by a “fish-eye” surrounding a “fine granular area, FGA” in the vicinity of an inclusion. In contrast, a microfacet, instead of an inclusion, is found at the center of FGA for the NIICI fracture surface. The predications of fatigue strength and life were performed on the two crack initiation modes based on fracture surface analysis. The results showed that a majority of fatigue life is consumed within the FGA for both the IICI and NIICI failure modes. The fatigue strength of the NIICI-fatigued samples can be conveniently predicted via the two parameters of the hardness of the sample and the size of the microfacet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.