Sort by
Hydrodynamically Activated Sawdust of Common Pine Pinus sylvestris L.-substrate for Cultivation of the Strain Gl4–16A Ganoderma lucidum

The results of a study on the use of sawdust of common pine Pinus sylvestris L. with their preliminary activation in a cavitation water-impact dispersant for 25 minutes as a substrate for cultivating the Gl4–16A strain of Ganoderma lucidum are presented. It was found that the Gl4–16A strain of Ganoderma lucidum colonizes the substrate more efficiently with the introduction of (NH4)2SO4 and Na2HPO4 salts into its composition. At the same time, the average growth rate of basidiomycete on the substrate without the introduction of salts was 1.39±0.53 mm/day, and on the substrate with nitrogen salts – 3.22±0.48 mm/day, and complete fouling of the substrate occurred on day 13. It was found that during the cultivation of the Gl4–16A strain of Ganoderma lucidum on a substrate with nitrogen salts, the content of extractive substances in it increases from 4.37 % to 6.32 %, where more than 65 % is accounted for by substances extracted with water. There is a decrease in the content of difficult-to-hydrolyze polysaccharides by 13.3 %, and an increase in the non-hydrolyzable part by 2.4 %, which is 6.8 % per organic mass. The content of easily hydrolyzable polysaccharides (LGA) decreases by 2.4 %, but this change is not significant in terms of organic mass and the share of LGA both before and after bioconversion is about 15.7 %. The obtained data can expand the field of use of sawdust, which is a promising direction, both in the chemical and pharmaceutical industries

Open Access
Relevant
Synthesis and Sulfation with Sulfamic Acid of Aerogels Based on Birch-Wood and Cotton Celluloses

Firstly, the structure and properties of cellulose aerogels produced from birch-wood and cottoncellulose and of, and products of their sulfation with a non-toxic sulfamic acid-urea complex in an environmentally safe solvent – a mixture of polyethylene glycol and sodium hydroxide are compared. Aerogels based on birch and cotton celluloses have similar values of apparent density (0,071–0,078 г/см3) and porosity (near 95 %). The products of sulfating of cellulose aerogels, in contrast to the originalbirch and cotton celluloses, are completely soluble in water. Their yield and degree of substitution are higher when using birch cellulose aerogel. By drying the dissolved products of sulfating of cellulose aerogels, smooth and transparent films were produced. The structure and morphology of the obtained aerogels and films were established by metods of scanning electron microscopy and atomic force microscopy. Birch cellulose aerogel (BCA) has a reticular microfibrillated porous structure, and cotton cellulose aerogel (CCA) has a spongy structure in which more cavities and cracks are observed than in the case of CCA. The surface of the film of sulfated BCA is formed by particles with a length 100–200 nm and width of 50–70 nm, and the films of sulfated CCA is formed by spherical particles with a diameter of 70–100 nm. The developed methods for obtaining sulfated cellulose films can be used in medicine to oreate anticoagulant coatings

Open Access
Relevant