Abstract

Direct X-ray detectors based on metal halide perovskites and their derivatives exhibit high sensitivity and low limit of detection (LoD). Compared with three-dimensional (3D) hybrid lead halide perovskites, low-dimensional A3Bi2I9 perovskite derivatives (A = Cs, Rb, NH4, CH3NH3(MA)) present better stability, greater environmental friendliness, and comparable X-ray detection performance. Here, we report FA3Bi2I9 (FA= CH(NH2)2) single crystals (SCs) as a new member of the A3Bi2I9 series for X-ray detection, which were prepared by the nucleation-controlled secondary solution constant temperature evaporation (SSCE) method. Centimeter-sized FA3Bi2I9 SCs show a full width at half-maximum (fwhm) of 0.0096°, which is superior to that of recently reported Cs3Bi2I9 (0.058°) and MA3Bi2I9 SCs (0.024°) obtained by inverse temperature crystallization (ITC). The as-grown FA3Bi2I9 SC shows a large resistivity of 7.8 × 1010 Ω cm and a high ion migration activation energy (Ea) of 0.56 eV, which can guarantee a low noise level and good operational stability under a large external bias. The FA3Bi2I9 SC detector exhibits a LoD of 0.2 μGyair s-1, a sensitivity of 598.1 μC Gyair -1 cm -2, and an X-ray detection efficiency of 33.5%, which are much better than those of the commercialized amorphous selenium detector. Results presented here will provide a new lead-free perovskite-type material to achieve green, sensitive, and stable X-ray detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call