Abstract

We demonstrate an observation of zero to π continuously controllable cross-phase-modulation based on N-type electromagnetically induced transparency scheme in a room-temperature 87Rb vapor. We theoretically and experimentally show that the signal field acquires a π phase shift compared with the reference light in the presence of the phase-control field. Using the method of the optical Mach-Zehnder interferometer, we demonstrate that a zero to π continuously controllable phase gate can be built by modulating the phase-control field. In addition, our theoretical calculation agrees well with the experimental observation, and the results presented in this work hold the potential applications for the orthogonal polarization/vector gate in the quantum information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.