Abstract

Quantum dots in photonic crystals are interesting both as a testbed for fundamental cavity quantum electrodynamics (QED) experiments and as a platform for quantum and classical information processing. We describe a technique to coherently access the QD-cavity system by resonant light scattering. Among other things, the coherent access enables a giant optical nonlinearity associated with the saturation of a single quantum dot strongly coupled to a photonic crystal cavity. We explore this nonlinearity to implement controlled phase and amplitude modulation between two modes of light at the single photon level—a nonlinearity observed so far only in atomic physics systems. We also measured the photon statistics of the reflected beam at various detunings with the QD/cavity system. These measurements reveal effects such as photon blockade and photon-induced tunneling, for the first time in solid state. These demonstrations lie at the core of a number of proposals for quantum information processing, and could also be employed to build novel devices, such as optical switches controlled at the single photon level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call