Abstract
We introduce and solve exactly a class of interacting particle systems in one dimension where particles hop asymmetrically. In its simplest form, namely asymmetric zero range process (AZRP), particles hop on a one dimensional periodic lattice with asymmetric hop rates; the rates for both right and left moves depend only on the occupation at the departure site but their functional forms are different. We show that AZRP leads to a factorized steady state (FSS) when its rate-functions satisfy certain constraints. We demonstrate with explicit examples that AZRP exhibits certain interesting features which were not possible in usual zero range process. Firstly, it can undergo a condensation transition depending on how often a particle makes a right move compared to a left one and secondly, the particle current in AZRP can reverse its direction as the density is changed. We show that these features are common in other asymmetric models which have FSS, like the asymmetric misanthrope process where rate functions for right and left hops are different, and depend on occupation of both the departure and the arrival site. We also derive sufficient conditions for having cluster-factorized steady states for finite range process with such asymmetric rate functions and discuss the possibility of condensation there.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.