Abstract

In this article, we investigate the condensation phenomena for a class of nonreversible zero-range processes on a fixed finite set. By establishing a novel inequality bounding the capacity between two sets, and by developing a robust framework to perform quantitative analysis on the metastability of non-reversible processes, we prove that the condensed site of the corresponding zero-range processes approximately behaves as a Markov chain on the underlying graph whose jump rate is proportional to the capacity with respect to the underlying random walk. The results presented in the current paper complete the generalization of the work of Beltran and Landim [4] on reversible zero-range processes, and that of Landim [22] on totally asymmetric zero-range processes on a one-dimensional discrete torus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.