Abstract

Starting with the zero-square “zeon algebra,” the connection with permanents is shown. Permanents of submatrices of a linear combination of the identity matrix and all-ones matrix lead to moment polynomials with respect to the exponential distribution. A permanent trace formula analogous to MacMahon's master theorem is presented and applied. Connections with permutation groups acting on sets and the Johnson association scheme arise. The families of numbers appearing as matrix entries turn out to be related to interesting variations on derangements. These generalized derangements are considered in detail as an illustration of the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.