Abstract
Today, new topology studies have been introduced for current and voltage source inverters that are widely used in power electronics applications in order to convert direct current to alternating current. In recent years, Z-source inverters (ZSIs) have become very popular by eliminating the conceptual and theoretical limitations of traditional inverters. ZSIs have the advantages like the shoot-through operation in the same phase leg of the inverter without using of DC-DC converters or transformers, the ability to operate as a buck or boost inverter depending on the applied modulation index and having a flexible-reliable circuit structure. In this study, performance analysis of a quasi Z-source inverter circuit (qZSI) under different operation conditions is comparatively examined. Among the most used control methods for the switching devices, the simple boost control technique has the largest voltage stress for a given voltage gain and the maximum boost control technique produces variable shoot-through signals resulting of low-frequency ripples on the passive components in the impedance network. Therefore constant boost control technique has been applied to the switches to generate the gate signals. The operating principle of the constant boost control technique with low voltage stress and stable shoot-through signals is explained. Boost factor, voltage gain, voltage stress and AC output voltage for different modulation indexes and DC voltage values of the qZSI are calculated with the related equations. Theoretical results have been verified with simulation studies by using Matlab/Simulink environment. According to the findings, stable shoot-through duty ratios are generated, and the qZSI circuit has been able to operate as a buck-boost converter to obtain the desired output voltage for different cases.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have