Abstract
The effect of treatment at up to 1270 K under hydrostatic argon pressure, up to 1.2 GPa, on strain relaxation of AlGaAs layers was investigated by X-ray diffraction and related methods. The 1.5 μm thick AlGaAs layers weregrown by molecular beam epitaxy method on 001 oriented semi-insulating GaAs substrate at 950 K. An increase in intensity of X-ray diffuse scattering, originating from hydrostatic pressure-induced misfit dislocations, was observed for all treated samples. For the samples treated at 920 K during 1 h under 0.6 GPa, the diffuse scattering was confined to the [110] crystallographic direction perpendicular to the direction of dislocations. For the samples treated at 1.2 GPa at the same temperature and time conditions as for 0.6G Pa, a different behaviour is observed, namely the diffuse scattering extends along all azimuthal directions, indicating that dislocations are created in both [110] and [110] directions. The change of strain after the treatment was most pronounced for the samples treated at 1.2 GPa for 1 h at 920 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.