Abstract
DNA sensors are a core component of innate immunity in mammalian cells. In response to pathogen infection, these specialized proteins sense pathogenic DNA from bacteria or viruses and initiate immune signaling cascades. These defense mechanisms rely on the rapid formation and temporal regulation of protein-protein interactions. Similarly, protein interactions underlie virus immune evasion mechanisms, as proteins from diverse viruses associate with and inhibit DNA sensors. Here, we describe experimental protocols for identifying protein interactions of DNA sensors, and discuss considerations for optimal isolation of protein complexes when targeting either endogenous or tagged proteins. Additionally, as viral infections and immune responses are known to induce prominent changes in cellular protein abundances, we provide a workflow for investigating these protein associations in the context of proteome alterations.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have