Abstract

Within-die process variations arise during integrated circuit (IC) fabrication in the sub-100nm regime. These variations are of paramount concern as they deviate the performance of ICs from their designers' original intent. These deviations reduce the parametric yield and revenues from integrated circuit fabrication. In this paper we provide a complete treatment to the subject of within-die variations. We propose a scan-chain based system, vMeter, to extract within-die variations in an automated fashion. We implement our system in a sample of 90 nm chips, and collect the within-die variations data. Then we propose a number of novel statistical analysis techniques that accurately model the within-die variation trends and capture the spatial correlations. We propose the use of maximum-likelihood techniques to find the required parameters to fit the model to the data. The accuracy of our models is statistically verified through residual analysis and variograms. Using our successful modeling technique, we propose a procedure to generate synthetic within-die variation patterns that mimic, or imitate, real silicon data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.