Abstract
As a novel communication pattern, the asymmetric beams adopt a strategy of different beamwidths for a specific link to reduce the beam alignment overheads and energy consumption. A good and thorough knowledge of the radio propagation characteristics is pivotal for further network deployment and optimization of wireless mobile communication systems. In this paper, a multiple-bounce beam channel model is proposed based on the ray-tracing considering the beamforming effects. Besides, a space–time–frequency (STF) power density profile reconstruction method is proposed. Relevant simulations are conducted to emulate an urban micro-cellular (UMi) street scenario at 28 GHz under the case of perfect beam alignment. On this basis, the beam-dependent small-scale fading properties (including STF power density profiles, delay spread, Doppler frequency shift spread, and angular spread) together with the large-scale fading characteristics (involving path loss and shadow fading) are fully investigated. Results reveal that the downlink of asymmetric beams presents more dispersions in contrast to the uplink in the STF domains. Furthermore, the shadow fading variances are asymmetric over different transceivers array element numbers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have