Abstract

Hyperloop is envisioned as the next generation of railway transportation mode, which can proceed at a speed of more than 1000 km/h. The safe operation of the Hyperloop depends heavily on the support of a stable communication system. In this paper, we propose a 3D channel model in vacuum tube scenarios based on the ray-tracing method. The reflection paths and line of sight (LoS) paths are considered. We derive the channel transfer function (CTF) expression for each multipath, and then the channel impulse response (CIR) is obtained. On this basis, the large-scale and small-scale channel characteristics, including path loss, shadow fading, correlation coefficient, delay spread, and angular spread, are investigated and analyzed. Simulation results show that the proposed channel model can characterize the wireless channel in the Hyperloop scenarios in detail, and the results maintain a high level of symmetry between the range of 0–250 m and 250–500 m. The relevant research results will contribute to the design of future Hyperloop wireless communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.