Abstract

Hills and mountain fields have a high proportion in coastal areas around the world. Especially in China, lots of low-rise buildings are in complex mountain terrain. Compared with the flat topography under typhoons, due to the change caused by complex topography, the damage ratio of low-rise buildings is much larger. This paper investigates the wind pressure distribution in three different configurations of typical mountain terrain on low-rise buildings in coastal areas by wind tunnel tests. At the same time, the results are compared with the wind pressure distribution of low-rise buildings without surrounding structures. The variation of the average pressure coefficient and shape coefficient with the change of hillside height under a wind attack angle of 0° and the trends of average wind pressure coefficients of a low-rise building under wind attack angles of 0° – 90° are studied. The results show that the distribution of pressure in low buildings is significantly affected by the height of the mountain. When the hillside height is half of the scale physical model, the influence coefficient from the mountain to each surface of the whole building is within 50%. When the hillside height is four times that of the model, the influence factor from the mountain to each surface of the whole building is obvious and is most significantly influenced by the leeward roof. The mean design criteria of the low-rise building, such as windward midline, leeward roof, and windward roof in these three typical mountain terrains, should be designed for their higher absolute value of the average pressure coefficient. The mean pressure coefficient under different wind angles and mountain environments has a significant relationship. The most unfavorable wind angle of wind load calculations should be considered when designing low-rise buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call