Abstract

The present hybrid vortex tube-vorton method is based entirely on the Full Multi-wake Vortex Lattice Method (FMVLM) concepts, which means detaching vorticity with precise vortex strength and orientation along all separation lines between each discretized element of a shell-body, including all external edges. Since the classic Vortex Particle Method (VPM) is unstable by itself because it does not conserve the total amount of circulation as time evolves (Kelvin’s circulation theorem), an isolated Vortex (regularized) Filament Method (VFM) approach is implemented to obtain advection of vorticity, while the induced velocity field is obtained through its corresponding full vorton cloud. Further, a novel vortex squeezing/stretching scheme for such a vortex cylinder-sphere approach is proposed based on variation in time for vortex volumes in order to precisely (zero residual) conserve both circulation and vorticity at each time step (for each detached vortex element), while the viscous effect can be accounted for via the Core Spreading Method (CSM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.