Abstract

Wide band gap transparent polymer-inorganic (PVA-ZnO) composite thin films were prepared by the dip-coating method. Functional groups and metal oxide vibrations were found from Fourier transform-infrared spectroscopy. The elements Zn and O were confirmed from energy dispersive X-ray spectroscopy. The X-ray diffraction patterns revealed that the sharp diffraction peaks correspond to the hexagonal wurtzite structure of ZnO in the PVA matrix. Scanning electron microscopy images showed that the ZnO nanoparticles are randomly distributed throughout the entire film surface. The optical study reveals that the transmittance was more than 85% with very low absorption and wide band gap energy (4.03 to 3.95 eV). The obtained results indicate that the high transmittance, very low absorption, and wide band gap energy of the prepared dip-coated composite thin films make them suitable for use in transparent optoelectronic device applications in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call