Abstract

Growth of the sodiumaluminium-hydroxy carbonate dawsonite (NaAl(OH)<sub>2<sub/>CO<sub>3<sub/>) after charging saline aquifers with CO<sub>2<sub/> has been assumed in a plethora of numerical simulations at different mineralogies, aqueous solutions, pressures and temperatures. It appears however that dawsonite is less abundant than expected in natural CO<sub>2<sub/> storage analogues if we take into account the thermodynamic stability alone. We have mapped the thermodynamic stability of dawsonite relative to mineral phases like albite, kaolinite and analcime from 37° to 200°C and performed closed-system batch kinetic simulations using a new kinetic expression including a nucleation term based on classical nucleation theory, and a growth term that was based on BCF growth theory. Using this rate equation, we have performed a sensitivity study on dawsonite growth on mineralogy, temperature, CO<sub>2<sub/> pressure, nucleation rate and its dependencies on temperature and affinity, and on the dawsonite precipitation rate coefficient. Simulations with dawsonite growth disabled showed that the maximum oversaturation reached for dawsonite for seawater-like solutions never exceeded 3-4 times oversaturation. The positive effect on dawsonite growth of increasing the CO<sub>2<sub/> pressure was mostly neutralized by higher acidity. Decreasing the precipitation rate coefficient by 5 orders of magnitude had a limited effect on the onset of significant growth, but the amount of dawsonite formed at the end of the 1 000 years simulated time was only 37% below the high-rate case. Reducing the nucleation rates had similar effects leading to postponed dawsonite growth. Finally, based on thermodynamic considerations and numerical simulations, we suggest that the potential of dawsonite growth is limited to a medium-temperature window framed by a high thermodynamic stability relative to competing mineral phases at low temperatures, but with rapidly diminishing nucleation and growth rates at lower temperatures constrained by energy barriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.