Abstract

Crystal nucleation rates have been measured in the supercooled melts of two richly polymorphic glass-forming liquids: ROY and nifedipine (NIF). ROY or 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile is known for its crystals of red, orange, and yellow colors and many polymorphs of solved structures (12). Of the many polymorphs, ON (orange needles) nucleates the fastest with the runner up (Y04) trailing by a factor of 103 when compared under the same mobility-limited condition, while the other unobserved polymorphs are slower yet by at least 5 orders of magnitude. Similarly, of the six polymorphs of NIF, γ' nucleates the fastest, β' is slower by a factor of 10, and the rest are slower yet by at least 5 decades. In both systems, the faster-nucleating polymorphs are not built from the lowest-energy conformers, while they tend to have higher energies and lower densities and thus greater similarity to the liquid phase by these measures. The temperature ranges of this study covered the glass transition temperature Tg of each system, and we find no evidence that the nucleation rate is sensitive to the passage of Tg. At the lowest temperatures investigated, the rates of nucleation and growth are proportional to each other, indicating that a similar kinetic barrier controls both processes. The classical nucleation theory provides an accurate description of the observed nucleation rates if the crystal growth rate is used to describe the kinetic barrier for nucleation. The quantitative rates of both nucleation and growth for the competing polymorphs enable prediction of the overall rate of crystallization and its polymorphic outcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.