Abstract

Low Salinity Water (LSW) incorporates in surfactant Enhanced Oil Recovery (EOR) as a pre-flush is a common practice aiming to reduce the formation salinity, which affects surfactant adsorption. However, in a field implementation, the adsorption of surfactant is unavoidable, so creating a scheme that detaches the trapped surfactant is equally essential. In this study, LSW was a candidate to enhance the desorption of surfactant. LSW solely formulated from NaCl (1 wt.%), Sodium Dodecylbenzene Sulfonate (SDBS) was chosen as the primary surfactant at its critical micelle concentration (CMC, 0.1 wt.%). It found that injecting LSW as post-flush achieved up to 71.7% of SDBS desorption that lower interfacial tension against oil (31.06° API) to 1.3 mN/m hence bring the total Recovery Factor (RF) to 56.1%. It was 4.9% higher than when LSW injecting as pre-flush and 5.2% greater than conventional surfactant flooding (without LSW). Chemical analysis unveiled salinity reduction induces Na+ ion adsorption substitution onto pore surface resulting in an increment in surfactant desorption. The study was further conducted in a numerical simulation upon history matched with core-flood data reported previously. By introducing LSW in post-flush after SDBS injection, up to 5.6% RF increased in comparison to other schemes. The proposed scheme resolved the problems of adsorbed surfactant after EOR, and further improve the economic viability of surfactant EOR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.