Abstract

The whole-journey nanomaterial research from material synthesis, composition and structure characterizations, property measurements to device construction and tests in one equipment chamber provides a quick and unambiguous way of establishing the relationships between synthesis conditions, composition and structures, physical properties and nanodevice performances of nanomaterials; however, it still proves challenging. Herein, we report the whole-journey research of tungsten oxide nanowires in an environmental scanning electron microscope (ESEM) equipped with an x-ray energy dispersive spectrometer (EDS) and a multifunctional nanoprobe system. Tungsten oxide nanowires are synthesized by irradiating a tungsten filament using a high-energy laser in O2 atmosphere with the dynamic growth processes of nanowires being directly visualized under ESEM observation. The as-synthesized nanowires are then characterized to be monoclinic W18O49 nanowires by combing in situ EDS and ex situ transmission electron microscopy. Important physical parameters, i.e. Young’s modulus, breaking strength, and electrical conductivity, of W18O49 nanowires are determined based on in situ property measurements. Two-terminal electronic devices employing single W18O49 nanowires as the channel are in situ constructed and their performances as near-infrared photodetectors and water vapor sensors are studied. The whole-journey research establishes the relationships between synthesis conditions, composition and structures, physical properties and nanodevice performances of tungsten oxide nanowires, and can be applied to other nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.