Abstract

Greater amberjack (Seriola dumerili) is distributed in tropical and temperate waters worldwide and is an important aquaculture fish. We carried out de novo sequencing of the greater amberjack genome to construct a reference genome sequence to identify single nucleotide polymorphisms (SNPs) for breeding amberjack by marker-assisted or gene-assisted selection as well as to identify functional genes for biological traits. We obtained 200 times coverage and constructed a high-quality genome assembly using next generation sequencing technology. The assembled sequences were aligned onto a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map by sequence homology. A total of 215 of the longest amberjack sequences, with a total length of 622.8 Mbp (92% of the total length of the genome scaffolds), were lined up on the yellowtail RH map. We resequenced the whole genomes of 20 greater amberjacks and mapped the resulting sequences onto the reference genome sequence. About 186,000 nonredundant SNPs were successfully ordered on the reference genome. Further, we found differences in the genome structural variations between two greater amberjack populations using BreakDancer. We also analyzed the greater amberjack transcriptome and mapped the annotated sequences onto the reference genome sequence.

Highlights

  • With the improvements in generation sequencing technologies in the past few years, many genome projects of aquaculture fishes have been reported, including Atlantic salmon (Salmo salar) [1], Atlantic cod (Gadus morhua) [2], rainbow trout (Oncorhynchus mykiss) [3], Japanese flounder (Paralichthys olivaceus) [4], half-smooth tongue sole (Cynoglossus semilaevis) [5], platyfish (Xiphophorus maculatus) [6], common carp (Cyprinus carpio) [7], and channel catfish (Ictalurus punctatus) [8], and molecular markers of the shared genomic loci among individuals have been obtained for genotype-phenotype linkage analysis

  • Chromosomelevel assemblies or assembled genome sequences integrated with genetic maps are powerful tools that enable analyses of fish genetic breeding by marker-assisted or geneassisted selection as well as help identify functional genes for biological traits

  • We are developing whole-genomic analysis of Seriola species to study how much genetic variation remains in natural fishes and to investigate the mechanism of whole genome duplication, as well as to obtain molecular markers of the shared genomic loci among individuals for genotypephenotype linkage analysis and to identify functional genes for biological traits

Read more

Summary

Introduction

With the improvements in generation sequencing technologies in the past few years, many genome projects of aquaculture fishes have been reported, including Atlantic salmon (Salmo salar) [1], Atlantic cod (Gadus morhua) [2], rainbow trout (Oncorhynchus mykiss) [3], Japanese flounder (Paralichthys olivaceus) [4], half-smooth tongue sole (Cynoglossus semilaevis) [5], platyfish (Xiphophorus maculatus) [6], common carp (Cyprinus carpio) [7], and channel catfish (Ictalurus punctatus) [8], and molecular markers of the shared genomic loci among individuals have been obtained for genotype-phenotype linkage analysis. To obtain molecular markers of the shared genomic loci among individuals, many technologies have been developed to probe whole-genome polymorphisms. These techniques have allowed the synthesis of DNA probes that can be used on SNP microarrays [14], making it possible to explore genome-wide SNPs in a high-throughput manner. We are developing whole-genomic analysis of Seriola species to study how much genetic variation remains in natural fishes and to investigate the mechanism of whole genome duplication, as well as to obtain molecular markers of the shared genomic loci among individuals for genotypephenotype linkage analysis and to identify functional genes for biological traits. We are interested in how much commonality exists between the yellowtail and amberjack genomes

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call