Abstract

BackgroundPhysical and linkage maps are important aids for the assembly of genome sequences, comparative analyses of synteny, and to search for candidate genes by quantitative trait locus analysis. Yellowtail, Seriola quinqueradiata, is an economically important species in Japanese aquaculture, and genetic information will be useful for DNA-assisted breeding. We report the construction of a second generation radiation hybrid map, its synteny analysis, and a second generation linkage map containing SNPs (single nucleotide polymorphisms) in yellowtail.ResultsApproximately 1.4 million reads were obtained from transcriptome sequence analysis derived from 11 tissues of one individual. To identify SNPs, cDNA libraries were generated from a pool of 500 whole juveniles, and the gills and kidneys of 100 adults. 9,356 putative SNPs were detected in 6,025 contigs, with a minor allele frequency ≥25%. The linkage and radiation hybrid maps were constructed based on these contig sequences. 2,081 markers, including 601 SNPs markers, were mapped onto the linkage map, and 1,532 markers were mapped in the radiation hybrid map.ConclusionsThe second generation linkage and physical maps were constructed using 6,025 contigs having SNP markers. These maps will aid the de novo assembly of sequencing reads, linkage studies and the identification of candidate genes related to important traits. The comparison of marker contigs in the radiation hybrid map indicated that yellowtail is evolutionarily closer to medaka than to green-spotted pufferfish, three-spined stickleback or zebrafish. The synteny analysis may aid studies of chromosomal evolution in yellowtail compared with model fish.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1600-7) contains supplementary material, which is available to authorized users.

Highlights

  • Physical and linkage maps are important aids for the assembly of genome sequences, comparative analyses of synteny, and to search for candidate genes by quantitative trait locus analysis

  • We report the results of transcriptome analysis, including single nucleotide polymorphism (SNP) identification

  • Gene ontology (GO) analysis was conducted on these 24,035 contigs. 17,076 sequences were assigned to at least one GO term describing three functional groups: biological process, molecular function and cellular component

Read more

Summary

Introduction

Physical and linkage maps are important aids for the assembly of genome sequences, comparative analyses of synteny, and to search for candidate genes by quantitative trait locus analysis. Yellowtail, Seriola quinqueradiata, is an economically important species in Japanese aquaculture, and genetic information will be useful for DNA-assisted breeding. We report the construction of a second generation radiation hybrid map, its synteny analysis, and a second generation linkage map containing SNPs (single nucleotide polymorphisms) in yellowtail. Perciformes are evolutionarily interesting, because the order includes fish species with various features and forms. There is insufficient genomic information for the fishes in this order to allow analyses of chromosomal evolution and the identification of important trait loci for breeding. Yellowtail (Seriola quinqueradiata), a member of the order Perciformes, is a popular and important species in Japanese aquaculture. We report the results of transcriptome analysis, including single nucleotide polymorphism (SNP) identification

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.